Última revisão PT: 04/05/2020

PRODUTO

Bucha	Qu	ím	ica
Vinylest	er C	eys	5

Cartucho 300 ml 901620

Descrição

Ancoragem química bicomponente à base de resina vinylester sem estireno ou ftalato e com catalisador. O produto apresenta-se em formato de cartucho standard aplicável com uma pistola tradicional. Suporta altas cargas.

Aplicações em suportes ocos e suportes compactos.

Características Técnicas

- Não se expande permitindo ancoragens em suportes frágeis ou próximo de uma esquina.
- Grande capacidade de carga.
- Resiste a vibrações e à intempérie.
- Protege as ancoragens da degradação por agentes climáticos.

Tabela de endurecimento

Temperatura	Tempo de manipulação	Secagem Final	Secagem Final
			(Húmido)
-10°C 1)	90 min	24 h	
-5°C	90 min	14 h	28 h
0 _o C	45 min	7 h	14 h
+5°C	25 min	2 h	4 h
+10°C	15 min	80 min	160 min
+20°C	6 min	45 min	90 min
+30°C	4 min	25 min	50 min
+35°C	2 min	20 min	40 min

 $^{^{1)}}$ Para instalações em material base entre -10°C e -5°C o cartucho deve ser aquecido a uma temperatura de +15°C a +25°C.

Última revisão PT: 04/05/2020

Resistência a cargas

Performance data - concrete (Threaded rod)

TENSION LOADS - Design method A acc. to EOTA Technical Report TR 029, characteristic values for tension loading

Anchor size (Threaded rod)				M10	M12	M16	M20	M24	M 27	M30
Steel fallure										
Characteristic tension resistance, Steel, zinc plated or hot dip, property class 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resistance, Steel, zinc plated or hot dip, property class 8.8	N _{Re,a}	[kN]	29	46	67	125	196	282	368	449
Partial safety factor	$\gamma_{Mx,N}$					1,	50			
Characteristic tension resistance, Stainless steel A4 and HCR	N _{Rb,s}	[kN]	26	41	59	110	172	247	230	281
Partial safety factor	Y _{Mx,N}				1,	87			2,	86
Pullout and concrete cone fallure 3)										
Characteristic bond resistance in non-cracked	concrete									
Temperature range 9: 40°C/24°C	$N_{Rk,p} = N^{\circ}_{Rk,c}$	[kN]	20,1	33.9	49.7	75.4	128	174	212	237
Temperature range 9: 80°C/50°C	$N_{Rk,p}\!=\!N^o_{Rk,c}$	[kN]	15,1	25.4	37-3	56,5	96,1	135	159	171
Temperature range 9: 120°C/72°C	$N_{_{Rk,p}}\!=\!N^{\circ}_{_{Rk,c}}$	[kN]	10,4	17,6	25,8	39,1	66,4	90,3	110	123
Partial safety factor	$\gamma_{Mp} = \gamma_s$	Ac				1,	,8			
Embedment depth	h _{ar}	[mm]	80	90	110	125	170	210	250	270
Edge distance	C _{cr,N}	[mm]	92	126	152	188	253	291	312	329
Axial distance	S _{cr,N}	[mm]				2 X	C _{cc,N}			
Increasing factors for non-cracked concrete ψ_{ε}	 									
Splitting failure										
Edge distance	C _{ct,ap}	$c_{c,sp}$ [mm] $c_{c,N} \le 2 h_{sf} (2.5 - h/h_{sf}) \le 2.4 h_{sf}$								
Axial distance	S _{cr,ap}	[mm]	ım] 2 х С _{се,ир}							
Partial safety factor	Y _{Map}		1,8							

The data in this table are intended to use together with the design provisions of TR029

- 1) For more details, as well as values in water filled concrete see ETA o8 / 0237.
- 2) Shall be determined acc. to this table or to TR 029. The smaller value is decisive.
- 3) Short term temperature/ Long term temperature. Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diumal cycling.

Última revisão PT: 04/05/2020

Parâmetros de instalação

Setting parameter - concrete

Anchor size (Threaded ro	od)			M8	M10	M12	M16	M20	M24	M27	Мзо
Edge distance		C _{cr,N}	[mm]	92	126	152	188	253	291	312	329
Min. edge distance	5.0x d	C _{min}	[mm]	40	50	60	80	100	120	135	150
Axial distance		S _{cr,N}	[mm]	184	252	304	376	506	582	624	658
Min. axial distance	5.0 x d	S _{min}	[mm]	40	50	60	80	100	120	135	150
Embedment depth		h _{er}	[mm]	80	90	110	125	170	210	250	280
Min. part thickness		h _{min}	[mm]	h _a	+ 30 m	m	h _{er} + 2d _o				
Anchor dlameter		d	[mm]	8	10	12	16	20	24	27	30
Drill diameter		d _o	[mm]	10	12	14	18	24	28	32	35
Installation torque		T _{inst.}	[Nm]	10	20	40	60	120	150	200	250

Resistência ao fogo

	F30	F60	F90	F120
M8	<190	<85	<55	<40
M10	<450	<210	<135	<100
M12	<600	<300	<200	<150
M16	<1100	<660	<490	<400
M20	<1600	<900	<640	<500

Resistência máxima de ancorar em betão (kg).

Rendimento

RENDIMENTO EM SUPORTES COMPACTOS

Diâmetro ancoragem	M8	M10	M12	M16	M20	M24	M30
Diâmetro buraco [mm]	10	12	14	18	24	28	35
Profundidade [mm]	80	90	110	125	175	210	280
Ancoragem/cartucho	80	49	30	16	6	4	2
300 ml							

RENDIMENTO EM SUPORTES OCOS

Diâmetro ancoragem	M8	M10	M12	M16
Diámetro buraco [mm]	10	12	14	18
Tamanho Camiza	13x85	13x85	13x85	18x85
Ancoragem/cartucho	24	24	24	13
300 ml				

Última revisão PT: 04/05/2020

Aplicações

- Ancoragem de elementos luminosos ou de sinalização.
- Fixação de máquinas.
- Fixação de escadas.
- Ancoragem de segurança para toldos ou antenas.
- Fixação de hastes, aço corrugado, parafusos, etc. e elementos metálicos em construção.

Modo de Utilização

SUPORTES OCOS

- Limpar bem o suporte usando uma escova e/ou bomba de ar.
- Colocar a camiza correspondente.
- Aplicar a bucha química, descartar a primeira mistura do produto até que a sua extrusão seja cor cinza uniforme, preenchendo a camiza na sua totalidade.
- Colocar o elemento de fixaça~o mecânico girando-o.
- Tempo de carga: consultar tabela de endurecimento.

SUPORTES COMPACTOS

- Limpar bem o suporte usando uma escova e/ou bomba de ar.
- Aplicar a bucha química, descartar a primeira mistura do produto até que a sua extrusão seja cor cinza uniforme, preenchendo o buraco em 60%.
- Colocar o elemento de fixação mecânico girando-o.
- Tempo de carga: consultar tabela de endurecimento.

Dissolução e limpeza

O produto é extremamente resistente a solventes depois de endurecido. Eliminar com acetona ou solventes polares antes do endurecimento e através de meios mecânicos, se este já tiver endurecido.

Armazenamento Validade: 12 meses, conservando entre os 10°C e os 25°C, na sua embalagem original e protegida da luz solar ou da humidade.

Outros dados de HOMOLOGAÇÃO EUROPEIA:

interesse

PRODUTO NORMALIZADO PARA APLICAÇÕES QUE IMPLIQUEM ALTOS RISCOS, GARANTIDO A MÁXIMA SEGURANÇA DE ANCORAGEM.

Última revisão PT: 04/05/2020

Garantimos as propriedades uniformes dos nossos produtos em todos os fornecimentos . As recomendações e os dados publicados nesta ficha técnica são baseados no nosso conhecimento atual e em rigorosos testes de laboratório. Devido às muitas variações de materiais e condições de cada projeto, solicitamos aos nossos clientes que realizem os seus próprios testes de utilidade nas condições de trabalho previstas e seguindo as nossas instruções gerais. Com isto, evitam-se posteriores prejuízos, cujas consequências nos seriam alheias.

Os dados indicados nesta ficha técnica nunca devem ser considerados como uma especificação das propriedades do produto.